SPDEs with affine multiplicative fractional noise in space with index $\frac{1}{4}\langle H\langle\frac{1}{2}$

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Parameter Estimation for Spdes with Multiplicative Fractional Noise

We study parameter estimation problem for diagonalizable stochastic partial differential equations driven by a multiplicative fractional noise with any Hurst parameter H ∈ (0, 1). Two classes of estimators are investigated: traditional maximum likelihood type estimators, and a new class called closed-form exact estimators. Finally the general results are applied to stochastic heat equation driv...

متن کامل

Stochastic Heat Equation with Multiplicative Fractional-Colored Noise

We consider the stochastic heat equation with multiplicative noise ut = 1 2 ∆u + uẆ in R+ × R , whose solution is interpreted in the mild sense. The noise Ẇ is fractional in time (with Hurst index H ≥ 1/2), and colored in space (with spatial covariance kernel f). When H > 1/2, the equation generalizes the Itô-sense equation for H = 1/2. We prove that if f is the Riesz kernel of order α, or the ...

متن کامل

A Break of the Complexity of the Numerical Approximation of Nonlinear SPDEs with Multiplicative Noise

A new algorithm for simulating stochastic partial differential equations (SPDEs) of evolutionary type, which is in some sense an infinite dimensional analog of Milstein’s scheme for finite dimensional stochastic ordinary differential equations (SODEs), is introduced and analyzed in this article. The Milstein scheme is known to be impressively efficient for scalar one-dimensional SODEs but only ...

متن کامل

White noise driven SPDEs with reflection

We study reflected solutions of a nonlinear heat equation on the spatial interval [0, 1] with Dirichlet boundary conditions, driven by space-time white noise. The nonlinearity appears both in the drift and in the diffusion coefficient. Roughly speaking, at any point (t, x) where the solution u(t, x) is strictly positive it obeys the equation, and at a point (t, x) where u(t, x) is zero we add a...

متن کامل

White noise driven quasilinear SPDEs with reflection

We study reflected solutions of the heat equation on the spatial interval [-0, 1] with Dirichlet boundary conditions, driven by an additive space-time white noise. Roughly speaking, at any point (x, t) where the solution u(x, t) is strictly positive it obeys the equation, and at a point (x, t) where u(x, t) is zero we add a force in order to prevent it from becoming negative. This can be viewed...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Electronic Journal of Probability

سال: 2015

ISSN: 1083-6489

DOI: 10.1214/ejp.v20-3719